

Suzaku wide-band all-sky monitor observations of GRB prompt emissions

Kazutaka Yamaoka (Aoyama Gakuin Univ.)

M.Tashiro, Y. Terada, Y.Urata, K.Onda, A.Endo, M.Suzuki, N.Kodaka, K.Morigami (Saitama-U), T.Tamagawa (RIKEN), Y.Fukazawa, M.Ohno, T.Takahashi, T.Uehara, C.Kira, Y.Hanabata (Hiroshima-U), K.Makishima, K.Nakazawa, T.Enoto (Univ.of Tokyo), M.Suzuki, M.Kokubun, T.Takahashi (JAXA/ISAS), S.Sugita, Y.E.Nakagawa (Aoyama Gakuin Univ.), M.Yamauchi, E.Sonoda, S.Maeno, R.Hara, H.Tanaka (Univ. of Miyazaki), S.Hong (Nihon Univ.), H.Tajima (SLAC) and the Suzaku WAM team

Wide-band all-sky monitor (WAM)

- Lateral large BGO shield of the HXD
- 4th instruments onboard Suzaku
- Scientific objectives: GRB, SGR, solar flare, black hole candidate

The WAM key parameters

Energy range : 50-5000 keV

Field of view : $\sim 2\pi$

Geometrical area: 800 cm²

Effective Area : 400 cm²@1 MeV

Energy resolution: ~30%@662 keV

Time resolution: 1 s (TRN)

15.625 msec (BST)

GRB statistics (2005 Aug.~2007 Aug.)

Confirmed GRBs 288 (trigger 185)

Localized	102
Swift/BAT	58
IPN	36
INTEGRAL	5
HETE2	2
superAGILE	1

The WAM is detecting more than 140 GRBs per year.

- → one of the largest ratein current GRB detectors
- ◆ GCNs 47
 rapid localization by IPN 11 → X-ray counterpart 2
 WAM spectral parameters 24

GRB light curves and energy spectra

Thanks to the WAM large effective area, high quality light curves and spectra can be obtained.

1/64 sec, 4 energy bands (BST data)

http://www.astro.isas.jaxa.jp/suzaku/HXD-WAM/WAM-GRB

WAM-BAT joint analysis (I)

- Only 33 triggered bursts of 61 samples were analyzed
- Could determine the Epeak for 32 GRBs except for one.
- The WAM-BAT parameter distribution corresponds quite well to the BATSE results.

Epeak

WAM-BAT joint analysis (II)

- 11 long GRB samples Almost satisfy the Amati relation
- 3 short GRB samples
 - GRB 051221A (z=0.5465)

 New additional GRBs

 GRB 060801 (z=1.131)
 - GRB 060801 (z=1.131)
 - GRB 061210 (z=0.41
- → These all are outliers in the Amati relation.

Isotropic energy Eiso (10 52 erg)

Different origin. another correlation?

Time resolved spectroscopy (I)

- Swift bright GRB 061007
 - z=1.261
 - T90 ~ 60 sec
- We successfully performed

 a time-resolved
 spectroscopy every 1 sec
 thanks to the large
 effective area.

Unique in current GRB detectors

The Epeak is variable with the source intensity in this short time scale.

Time resolved spectroscopy (II)

- A clear correlation is found in a short time scale of 1 sec similar to Yonetoku et al. and Liang et al.
- In the rising phase, some deviations can be seen.
 - → subject to different process in rise and decay phase.

The highest redshift GRB 050904 (I)

- Discovered by Swift/BAT on 2005 Sep. 4, 01:51:44
- Redshift of 6.295+-0.003 (Kawai et al. 2005)
- Photon index of 1.34+-0.06 in 15-150 keV.
- WAM detected signals above BAT energy range!
 - → Detailed information of prompt emissions

Alpha = 1.13+-0.13 Epeak = 338 (-93, +168) keV chi2/d.o.f = 71/65

The highest redshift GRB 050904 (II)

- Spectral parameters:
 - Epeak(1+z)=2390(-771,+1346) keV,
 - Eiso = $(1.20+-0.21)X10^{54}$ erg, Egamma = $(1.9+-0.3)X10^{51}$ erg
- Consistent with Amati relation even at the high redshift, but not with Ghirlanda relation (nominal circumburst density 3 cm⁻³).
- imply that the circumburst density might be larger than nominal one.

Discovery of very long GRB 060814B (I)

Very long duration of ~2600 seconds (maybe record)

Detected by Suzaku-WAM, Konus-Wind, Ulysses, Mars-Odyssev and INTEGRAL SPI-ACS.
IPN localization

GRB 060814B (II)

- Alpha = -0.33 (-0.18, +0.22)
- Beta = -2.49(-0.53, +0.27)
- Epeak = 483 +- 48 keV
- Fluence in 100-2000 keV >1.04X10⁻⁴ erg/cm²

Konus Fluence in 15-1000 keV $(2.35 \pm 0.22)_{-10^{-4}} \text{ erg/cm}^2$

Hard to soft evolution

Spectral parameters and evolutions are typical in GRBs, but more energetic

Summary

- Suzaku WAM has been detecting more than 140 GRBs per year which shows one of the largest rate in current GRB missions.
- BAT-WAM joint analysis has derived Epeak from many GRBs. The spectral parameters are consistent with BATSE results.
- Time resolved spectroscopy using the WAM is very unique in studying the prompt emissions.
- The WAM detected three interesting GRBs:
 - GRB 060814B with the longest duration
 - GRB 050904 with the highest redshift
 - GRB 051103 can be a candidate of magnetar in M81 or M82

WAM poster presentations at this conference

- [A36] short GRB summary (M.Ohno et al.)
- [A34] IPN localization (K.Hurley et al.)
- [A37] GRB 060814 and GRB 070125
 (K.Onda et al.)
- [A6] Earth occultation technique (Y.Fukazawa et al.)

Outline of my talk

- Introduction of the WAM
- GRB observation status
- WAM-BAT joint analysis
 - Epeak distribution
 - updated Amati relation
- Time-resolved spectroscopy for bright GRBs
- Two interesting GRBs
 - GRB 050904 (with the highest redshift)
 - GRB 060814B (with the longest duration)

WAM-BAT joint analysis (I)

- Started a cross-calibration work on Aug. 2006 with Konus-Wind and Swift-BAT team.
 - → Now calibration uncertainties are estimated to ~20%
 - → Next step is to derive scientific results.
- Almost of all the Swift bursts can not determine the Epeak. A combination of BAT (15-150 keV) and WAM (50- 5000 keV) allows us to determine the spectral parameters including Epeak.
- 61 Swift GRBs detected by the WAM up to present
 - 35 triggered GRBs (33 analyzed)
 - 26 un-triggered GRBs (only GRB 050904)
 - 25 with redshifts

Detector Calibration

- Absolute Timingverified within 2 msec by the IPN
- Absolute Effective area20-30 % for various angles